Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

2-(2-Hydroxyphenyl)-4,5-dimethyl-1*H*imidazol-3-ium acetate monohydrate

Hui-Liang Wen,^{a,b}* Min He^a and Chong-Bo Liu^c

^aDepartment of Chemistry, Nanchang University, Nanchang 330031, People's Republic of China, ^bState Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, People's Republic of China, and ^cCollege of Environmental and Chemical Engineering, Nanchang University of Aeronautics, Nanchang 330063, People's Republic of China Correspondence e-mail: hlwen70@163.com

Received 16 August 2008; accepted 7 September 2008

Key indicators: single-crystal X-ray study; T = 295 K; mean σ (C–C) = 0.003 Å; R factor = 0.042; wR factor = 0.109; data-to-parameter ratio = 14.3.

In the title compound, $C_{11}H_{13}N_2O^+ \cdot C_2H_3O_2^- \cdot H_2O$, the dihedral angle between the benzene ring and the imidazole ring is 7.83 (6)°. In the crystal structure, $N-H \cdot \cdot \cdot O$ and $O-H \cdot \cdot \cdot O$ hydrogen bonds form a two-dimensional network. All the methyl H atoms are disorderd over two sites with equal occupancies.

Related literature

For related literature, see: Maeda *et al.* (1984); Puratchikody & Doble (2007); Quattara *et al.* (1987); Ucucu *et al.* (2001); Scott *et al.* (2004); Seko *et al.* (1991).

Experimental

Crystal data	
$C_{11}H_{13}N_2O^+ \cdot C_2H_3O_2^- \cdot H_2O$	b = 9.6542 (14) Å
$M_r = 266.29$	c = 17.141 (3) Å
Monoclinic, $P2_1/n$	$\beta = 96.374 \ (2)^{\circ}$
a = 8.1655 (12) Å	V = 1342.9 (3) Å ³

Z = 4Mo $K\alpha$ radiation $\mu = 0.10 \text{ mm}^{-1}$

Data collection

Bruker SMART CCD
diffractometer
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
$T_{\min} = 0.956, \ T_{\max} = 0.977$

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.041$ 174 parameters $wR(F^2) = 0.109$ H-atom parameters constrainedS = 1.05 $\Delta \rho_{max} = 0.20 \text{ e } \text{\AA}^{-3}$ 2488 reflections $\Delta \rho_{min} = -0.15 \text{ e } \text{\AA}^{-3}$

Table 1 Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$N2 - H2D \cdots O4$	0.86	1.93	2.7747 (19)	169
$N1 - H1D \cdots O1$	0.86	2.17	2.6956 (19)	119
$N1 - H1D \cdots O3$	0.86	2.10	2.834 (2)	142
$O4 - H2W \cdot \cdot \cdot O3^{i}$	0.84	1.89	2.710 (2)	164
$O4 - H1W \cdot \cdot \cdot O2^{ii}$	0.84	2.07	2.808 (2)	146
$O1 - H1 \cdots O2^{iii}$	0.82	1.76	2.5624 (18)	167

Symmetry codes: (i) -x, -y + 2, -z; (ii) x, y + 1, z; (iii) -x + 1, -y + 1, -z.

Data collection: *SMART* (Bruker, 1998); cell refinement: *SAINT* (Bruker, 1998); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *SHELXTL* (Sheldrick, 2008); software used to prepare material for publication: *SHELXTL*.

This work is supported by the National Natural Science Foundation of China (20662007) and the Key Laboratory Open Foundation of Food Science of the Ministry of Education, Nanchang University (NCU200407).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: LH2684).

References

- Bruker (1998). SAINT and SMART. Bruker AXS Inc., Madison, Wisoconsin, USA.
- Maeda, S., Suzuki, M., Iwasaki, T., Matsumoto, K. & Iwasawa, Y. (1984). *Chem. Pharm. Bull.* **32**, 2536–2543.

Puratchikody, A. & Doble, M. (2007). Bioorg. Med. Chem. 15, 1083-1090.

- Quattara, L., Debaert, M. & Cavier, R. (1987). Farmaco Ed. Sci. 42, 449–456. Scott, E. W., David, D. W., William, H. L., Yi, W., Zhijian, Z. & Craig, W. L.
- (2004). Org. Lett. **6**, 1453–1456.
- Seko, N., Yoshino, K., Yokota, K. & Tsukamoto, G. (1991). *Chem. Pharm. Bull.* **39**, 651–657.
- Sheldrick, G. M. (1996). SADABS, University of Göttingen, Germany.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

Ucucu, U., Karaburun, N. G. & Isikdag, I. (2001). Farmaco, 56, 285-290.

organic compounds

T = 295 (2) K

 $R_{\rm int}=0.032$

 $0.46 \times 0.38 \times 0.24$ mm

8442 measured reflections 2488 independent reflections

1751 reflections with $I > 2\sigma(I)$

supplementary materials

Acta Cryst. (2008). E64, o1949 [doi:10.1107/S1600536808028626]

2-(2-Hydroxyphenyl)-4,5-dimethyl-1H-imidazol-3-ium acetate monohydrate

H.-L. Wen, M. He and C.-B. Liu

Comment

Imidazole derivatives can have a wide range of biological activities such as analgesic (Ucucu *et al.*, 2001), antiinflammmatory (Maeda *et al.*, 1984), antiparasitic (Quattara *et al.*, 1987), antiepileptic and platelet aggregation inhibitors (Seko *et al.*, 1991). The neutral imidizole component of the title compound could potentially exhibit biological activities (Puratchikody & Doble, 2007). In this paper, we report the crystal structure of the title compound (I).

In the title compound (Fig. 1), the benzene ring and the imidazole ring are approximately co-planar with a dihedral angle of 7.83 (6)° between them. The components of the salt are linked via N-H…O hydrogen bonds. In the crystal structure, intermolecular O—H…O and N—H…O hydrogen bonds link the components of the title compound into a two-dimensional network.

Experimental

The title compound was prepared according to a literature method (Scott *et al.*, 2004). 1.72 g (20 mmol) butane-2,3-dione, 2.44 g (20 mmol), 4-hydroxybenzaldehyde and 5 g (>50 mmol) NH₄Ac were placed in a sealed container with 100 ml CH₃Cl:HAc (4:1) as the solvent and heated in a micro-wave at 350 W for 24 min. After the reaction, the solvent was evaporated. The pure product as a dark red crystalline solid was obtained by re-crystallization from hot EtOH/H₂O in a yield of 81.6% and suitable for X-ray diffraction analysis.

Refinement

The water H atoms were located in a difference Fourier map and refined with idealized calculated O—H distances of 0.84Å and $U_{iso}(H) = 1.5 U_{eq}(O)$. All other H atoms were placed at geometrically idealized positions with C—H (methyl) = 0.96 Å and C—H = 0.93Å for phenyl, N—H = 0.86 Å, and $U_{iso}(H) = 1.2 U_{eq}(C,N)$. All methyl H atoms were refined as disorded over two sites with 0.5 occupancy.

Figures

Fig. 1. : The molecular structure of the title compound with the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level and H atoms are represented as spheres of arbitrary radii. Hydrogen bonds are shown as a dashed lines. Only one disorder site for each methyl H atom is showm.

Fig. 2. : Part of the crystal structure with hydrogen bonds shown as dashed lines.

2-(2-Hydroxyphenyl)-4,5-dimethyl-1H-imidazol-3-ium acetate monohydrate

Crystal data

 $F_{000} = 568$ $C_{11}H_{13}N_2O^+ C_2H_3O_2^- H_2O$ $D_{\rm x} = 1.317 \ {\rm Mg \ m^{-3}}$ $M_r = 266.29$ Mo Kα radiation Monoclinic, $P2_1/n$ $\lambda = 0.71073 \text{ \AA}$ Hall symbol: -P 2yn Cell parameters from 1719 reflections *a* = 8.1655 (12) Å $\theta = 2.4 - 21.9^{\circ}$ *b* = 9.6542 (14) Å $\mu = 0.10 \text{ mm}^{-1}$ c = 17.141 (3) Å T = 295 (2) K $\beta = 96.374 \ (2)^{\circ}$ Block, yellow V = 1342.9 (3) Å³ $0.46 \times 0.38 \times 0.24 \text{ mm}$ Z = 4

Data collection

Bruker SMART CCD diffractometer	2488 independent reflections
Radiation source: fine-focus sealed tube	1751 reflections with $I > 2\sigma(I)$
Monochromator: graphite	$R_{\rm int} = 0.032$
T = 295(2) K	$\theta_{\text{max}} = 25.5^{\circ}$
φ and ω scans	$\theta_{\min} = 2.4^{\circ}$
Absorption correction: multi-scan (SADABS; Sheldrick, 1996)	$h = -9 \rightarrow 9$
$T_{\min} = 0.956, T_{\max} = 0.977$	$k = -11 \rightarrow 11$
8442 measured reflections	$l = -20 \rightarrow 20$

Refinement

Refinement on F^2	Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: full	H-atom parameters constrained
$R[F^2 > 2\sigma(F^2)] = 0.041$	$w = 1/[\sigma^2(F_o^2) + (0.0429P)^2 + 0.2995P]$ where $P = (F_o^2 + 2F_c^2)/3$
$wR(F^2) = 0.109$	$(\Delta/\sigma)_{max} < 0.001$
<i>S</i> = 1.05	$\Delta \rho_{max} = 0.20 \text{ e } \text{\AA}^{-3}$
2488 reflections	$\Delta \rho_{\text{min}} = -0.15 \text{ e } \text{\AA}^{-3}$
174 parameters	Extinction correction: SHELXL, $Fc^*=kFc[1+0.001xFc^2\lambda^3/sin(2\theta)]^{-1/4}$
Primary atom site location: structure-invariant direct methods	Extinction coefficient: 0.0109 (16)

Secondary atom site location: difference Fourier map

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

 $U_{\rm iso}*/U_{\rm eq}$ Occ. (<1) \boldsymbol{Z} х y 01 0.0587 (4) 0.43862 (18) 0.76646 (13) -0.03904(8)H10.5030 0.7086 -0.05290.088* O3 0.24781 (18) 0.61838 (14) 0.08451 (11) 0.0777 (5) 02 0.33771 (17) 0.41072 (13) 0.06150 (9) 0.0600(4)04 0.08440 (17) 1.35614 (13) -0.05919(8)0.0593 (4) H1W 0.089* 0.1378 1.4036 -0.0243H2W -0.01621.3770 -0.06100.089* N1 0.25223 (18) 0.90693 (15) 0.05447 (9) 0.0435 (4) H1D 0.052* 0.2938 0.8251 0.0545 N2 0.17344 (18) 1.11013 (14) 0.01783 (9) 0.0411 (4) 0.049* H2D 0.1545 1.1834 -0.0103C1 0.4058 (2) 0.86127 (18) -0.09630(11)0.0425 (4) C2 0.3119 (2) 0.97773 (17) -0.08056(10)0.0385 (4) C3 1.07700 (19) 0.2787(2) -0.13939(11)0.0467 (5) 0.056* H3 0.2185 1.1555 -0.1293C4 0.3333 (3) 1.0612 (2) -0.21208(12)0.0546 (5) H4 0.3099 0.066* 1.1282 -0.2507C5 0.9446(2)0.4233 (3) -0.22712(12)0.0562 (6) Н5 0.4589 0.9326 -0.27640.067* C6 0.0521 (5) 0.4602 (2) 0.8466 (2) -0.17006 (12) H6 0.5223 0.7695 -0.18070.063* C7 0.2492 (2) 0.99653 (17) -0.00505 (10) 0.0388 (4) C8 0.1793 (2) 0.96438 (19) 0.11599 (11) 0.0444 (5) C9 0.1301 (2) 1.09338 (18) 0.09268 (11) 0.0429 (5) C10 0.1708 (3) 0.8898 (2) 0.19128 (12) 0.0630(6) H10A 0.2175 0.7991 0.1880 0.095* 0.50 H10B 0.0578 0.8818 0.2013 0.095* 0.50 H10C 0.2314 0.9405 0.2332 0.095* 0.50 H10D 0.1203 0.9485 0.2270 0.095* 0.50 H10E 0.2800 0.8658 0.2137 0.095* 0.50 H10F 0.1064 0.8071 0.1818 0.095* 0.50 C11 0.0489 (3) 1.2060(2) 0.13390 (12) 0.0574 (6) H11A 0.0308 1.2846 0.0997 0.086* 0.50

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

supplementary materials

H11B	0.1186	1.2325	0.1803	0.086*	0.50
H11C	-0.0547	1.1735	0.1482	0.086*	0.50
H11D	0.0323	1.1758	0.1858	0.086*	0.50
H11E	-0.0555	1.2279	0.1052	0.086*	0.50
H11F	0.1178	1.2869	0.1373	0.086*	0.50
C12	0.3592 (2)	0.53088 (18)	0.08843 (11)	0.0448 (5)	
C13	0.5261 (3)	0.5695 (2)	0.12663 (14)	0.0641 (6)	
H13F	0.6052	0.5599	0.0895	0.096*	0.50
H13E	0.5559	0.5097	0.1707	0.096*	0.50
H13D	0.5248	0.6638	0.1443	0.096*	0.50
H13C	0.5187	0.5957	0.1802	0.096*	0.50
H13B	0.5680	0.6459	0.0990	0.096*	0.50
H13A	0.5991	0.4918	0.1253	0.096*	0.50

Atomic displacement parameters (\AA^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
01	0.0687 (10)	0.0470 (8)	0.0630 (9)	0.0195 (7)	0.0194 (8)	0.0032 (7)
O3	0.0517 (9)	0.0506 (9)	0.1328 (15)	0.0125 (7)	0.0196 (10)	0.0043 (9)
O2	0.0515 (9)	0.0434 (8)	0.0842 (11)	0.0017 (6)	0.0039 (7)	-0.0110 (7)
O4	0.0526 (8)	0.0550 (8)	0.0698 (10)	0.0083 (7)	0.0045 (7)	-0.0070 (7)
N1	0.0426 (9)	0.0386 (8)	0.0498 (10)	0.0050 (7)	0.0073 (7)	0.0003 (7)
N2	0.0427 (9)	0.0363 (8)	0.0449 (9)	0.0021 (7)	0.0073 (7)	-0.0021 (7)
C1	0.0399 (10)	0.0394 (10)	0.0482 (11)	-0.0008 (8)	0.0054 (9)	-0.0036 (8)
C2	0.0358 (10)	0.0358 (9)	0.0443 (11)	-0.0021 (7)	0.0061 (8)	-0.0057 (8)
C3	0.0444 (11)	0.0444 (11)	0.0513 (12)	0.0015 (8)	0.0054 (9)	-0.0031 (9)
C4	0.0615 (13)	0.0566 (12)	0.0460 (12)	-0.0016 (10)	0.0074 (10)	0.0015 (9)
C5	0.0599 (13)	0.0641 (13)	0.0463 (12)	-0.0030 (11)	0.0128 (10)	-0.0110 (10)
C6	0.0529 (12)	0.0492 (11)	0.0558 (13)	0.0038 (9)	0.0130 (10)	-0.0116 (10)
C7	0.0350 (10)	0.0362 (9)	0.0451 (11)	0.0007 (7)	0.0044 (8)	-0.0042 (8)
C8	0.0411 (11)	0.0474 (11)	0.0455 (11)	-0.0026 (8)	0.0078 (9)	-0.0026 (9)
C9	0.0387 (10)	0.0456 (11)	0.0452 (11)	-0.0028 (8)	0.0080 (8)	-0.0074 (8)
C10	0.0687 (15)	0.0692 (14)	0.0525 (13)	0.0011 (11)	0.0132 (11)	0.0092 (10)
C11	0.0586 (13)	0.0541 (12)	0.0624 (13)	-0.0034 (10)	0.0197 (11)	-0.0159 (10)
C12	0.0430 (11)	0.0398 (11)	0.0532 (12)	0.0012 (9)	0.0117 (9)	0.0049 (9)
C13	0.0551 (14)	0.0678 (14)	0.0682 (15)	-0.0103 (11)	0.0010 (11)	-0.0017 (12)

Geometric parameters (Å, °)

01—C1	1.347 (2)	C8—C9	1.355 (2)
O1—H1	0.8200	C8—C10	1.486 (3)
O3—C12	1.238 (2)	C9—C11	1.492 (2)
O2—C12	1.254 (2)	C10—H10A	0.9600
O4—H1W	0.8364	C10—H10B	0.9600
O4—H2W	0.8428	C10—H10C	0.9600
N1—C7	1.336 (2)	C10—H10D	0.9600
N1—C8	1.383 (2)	С10—Н10Е	0.9600
N1—H1D	0.8600	C10—H10F	0.9600
N2—C7	1.339 (2)	C11—H11A	0.9600

		011 - TT11D	0.0700
N2—C9	1.378 (2)	CII—HIIB	0.9600
N2—H2D	0.8600	CII—HIIC	0.9600
C1—C6	1.393 (3)	C11—H11D	0.9600
C1—C2	1.404 (2)	C11—H11E	0.9600
C2—C3	1.396 (2)	C11—H11F	0.9600
C2—C7	1.455 (2)	C12—C13	1.493 (3)
C3—C4	1.377 (3)	C13—H13F	0.9600
С3—Н3	0.9300	С13—Н13Е	0.9600
C4—C5	1.384 (3)	C13—H13D	0.9600
C4—H4	0.9300	С13—Н13С	0.9600
C5—C6	1.370 (3)	С13—Н13В	0.9600
С5—Н5	0.9300	C13—H13A	0.9600
С6—Н6	0.9300		
C1	109.5	H10A—C10—H10F	56.3
H1W—O4—H2W	108.9	H10B—C10—H10F	56.3
C7—N1—C8	110.46 (14)	H10C-C10-H10F	141.1
C7—N1—H1D	124.7	H10D-C10-H10F	109.5
C8—N1—H1D	124.8	H10E—C10—H10F	109.5
C7—N2—C9	110.57 (14)	С9—С11—Н11А	109.5
C7—N2—H2D	124.7	C9—C11—H11B	109.5
C9—N2—H2D	124.7	H11A—C11—H11B	109.5
01	122.33 (16)	C9—C11—H11C	109.5
01 - C1 - C2	118 22 (16)	H11A-C11-H11C	109.5
$C_{6} - C_{1} - C_{2}^{2}$	119 44 (17)	H11B-C11-H11C	109.5
C_{3} C_{2} C_{1}	118 52 (16)	C9-C11-H11D	109.5
C_{3} C_{2} C_{1}	119.85 (15)		109.5
$C_1 - C_2 - C_7$	121.63 (16)	H11B_C11_H11D	56.3
$C_1 - C_2 - C_7$	121.03 (10)	H11C_C11_H11D	56.3
$C_1 C_2 H_3$	110.2	C_{0} C_{11} H_{11E}	100.5
$C_2 = C_2 = H_2$	119.5		56.2
$C_2 = C_3 = H_3$	119.5		141.1
$C_3 = C_4 = C_3$	119.50 (19)		141.1 56.2
$C_5 = C_4 = H_4$	120.3		100.5
C3-C4-H4	120.5		109.5
$C_{0} = C_{0} = C_{4}$	120.52 (18)		109.5
Со-Со-Но	119.7	HIIA—CII—HIIF	56.3
C4—C5—H5	119.7	HIIB—CII—HIIF	56.3
C5-C6-C1	120.73 (18)	HIIC—CII—HIIF	141.1
С5—С6—Н6	119.6	HIID—CII—HIIF	109.5
C1—C6—H6	119.6	H11E—C11—H11F	109.5
N1—C7—N2	106.06 (15)	O3—C12—O2	122.65 (19)
N1—C7—C2	128.32 (15)	O3—C12—C13	118.89 (18)
N2—C7—C2	125.61 (16)	O2—C12—C13	118.46 (17)
C9—C8—N1	106.41 (15)	C12—C13—H13F	109.5
C9—C8—C10	131.30 (17)	C12—C13—H13E	109.5
N1—C8—C10	122.25 (16)	H13F—C13—H13E	109.5
C8—C9—N2	106.49 (15)	C12—C13—H13D	109.5
C8—C9—C11	131.55 (17)	H13F—C13—H13D	109.5
N2—C9—C11	121.95 (17)	H13E—C13—H13D	109.5
C8—C10—H10A	109.5	C12—C13—H13C	109.5

supplementary materials

C8-C10-H10B	109.5	H13F—C13—H13C	141.1
H10A—C10—H10B	109.5	H13E—C13—H13C	56.3
C8—C10—H10C	109.5	H13D—C13—H13C	56.3
H10A-C10-H10C	109.5	C12—C13—H13B	109.5
H10B-C10-H10C	109.5	H13F—C13—H13B	56.3
C8—C10—H10D	109.5	H13E—C13—H13B	141.1
H10A—C10—H10D	141.1	H13D—C13—H13B	56.3
H10B-C10-H10D	56.3	H13C—C13—H13B	109.5
H10C-C10-H10D	56.3	C12—C13—H13A	109.5
C8—C10—H10E	109.5	H13F—C13—H13A	56.3
H10A—C10—H10E	56.3	H13E—C13—H13A	56.3
H10B-C10-H10E	141.1	H13D—C13—H13A	141.1
H10C-C10-H10E	56.3	H13C—C13—H13A	109.5
H10D-C10-H10E	109.5	H13B—C13—H13A	109.5
C8—C10—H10F	109.5		
O1—C1—C2—C3	179.44 (16)	C9—N2—C7—C2	-179.93 (16)
C6—C1—C2—C3	-1.2 (3)	C3—C2—C7—N1	171.82 (17)
O1—C1—C2—C7	-0.6 (3)	C1—C2—C7—N1	-8.1 (3)
C6—C1—C2—C7	178.69 (16)	C3—C2—C7—N2	-7.3 (3)
C1—C2—C3—C4	1.3 (3)	C1—C2—C7—N2	172.81 (16)
C7—C2—C3—C4	-178.65 (17)	C7—N1—C8—C9	0.1 (2)
C2—C3—C4—C5	-0.2 (3)	C7—N1—C8—C10	-177.72 (17)
C3—C4—C5—C6	-1.0 (3)	N1-C8-C9-N2	0.34 (19)
C4—C5—C6—C1	1.1 (3)	C10—C8—C9—N2	177.9 (2)
O1—C1—C6—C5	179.40 (18)	N1-C8-C9-C11	-178.04 (19)
C2-C1-C6-C5	0.1 (3)	C10—C8—C9—C11	-0.4 (4)
C8—N1—C7—N2	-0.59 (19)	C7—N2—C9—C8	-0.7 (2)
C8—N1—C7—C2	-179.82 (17)	C7—N2—C9—C11	177.84 (17)
C9—N2—C7—N1	0.82 (19)		

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H···A	$D \cdots A$	$D -\!\!\!-\!\!\!-\!\!\!\!-\!\!\!\!\!-\!\!\!\!\!-\!\!\!\!\!\!\!\!\!\!\!$
N2—H2D···O4	0.86	1.93	2.7747 (19)	169
N1—H1D…O1	0.86	2.17	2.6956 (19)	119
N1—H1D···O3	0.86	2.10	2.834 (2)	142
O4—H2W···O3 ⁱ	0.84	1.89	2.710 (2)	164
O4—H1W···O2 ⁱⁱ	0.84	2.07	2.808 (2)	146
O1—H1···O2 ⁱⁱⁱ	0.82	1.76	2.5624 (18)	167

Symmetry codes: (i) -*x*, -*y*+2, -*z*; (ii) *x*, *y*+1, *z*; (iii) -*x*+1, -*y*+1, -*z*.

Fig. 1

